
December 2004 www.stsc.hill.af.mil 23

Reuse has been defined variously:
Definitions range from “the systemat-

ic practice of developing software from a
stock of building blocks, so that similari-
ties in requirements and/or architecture
between applications can be exploited to
achieve substantial benefits in productivi-
ty, quality, and business performance” [1]
to “the process of creating software sys-
tems from predefined software compo-
nents” [2].

The first definition is seemingly more
complete, but the second definition is less
restrictive and more useful. Too often in
literature, a purist attitude is taken toward
reuse. For example, often the term reuse is
applied to only those elements that can be
used without change or to only those ele-
ments that have been designed and con-
figured for reuse. For this article, there-
fore, reuse is defined simply as using previ-
ously existing software artifacts. Artifacts
include all products of a certification
development process and include plan-
ning data, requirements data, design data,
source code, configuration management
records, quality assurance records, and
verification data.

Reuse Factors
Functional Alignment
Two aspects of functional alignment can
affect the reuse strategy adopted. The
first aspect, applicability, is a determina-
tion of how well the existing require-
ments/functionality align with the
requirements of the target application.
Do the artifacts serve the intended pur-
pose? How much must the artifacts be
modified to accommodate any new func-
tionality? The second aspect also con-
cerns the alignment of new functionality
to existing functionality, although in the
opposite respect. Does the existing con-
figuration contain more functionality than
is needed for the targeted application?
What must be done to accommodate this
additional functionality?

The issues surrounding extra func-
tionality are prevalent with design-for-
reuse component libraries. These
libraries are designed to include all possi-

ble future functionality needs and, by
their very nature, include additional func-
tionality. These existing configurations
typically contain more functionality than is
needed for the targeted application. How,
then, must this additional functionality
be accommodated in a certifiable soft-
ware system?

A variety of strategies are available to
handle extra functionality. Seemingly, the
most simple is to strip the unnecessary
functionality from the configuration (from

requirements through verification arti-
facts). Conceptually, this is the simplest
approach, but this may not be the most
cost-effective approach.

Additional unused functionality may
be retained in the code as long as the
mechanism by which such code could be
inadvertently executed is prevented, iso-
lated, or eliminated [3] is verified. In other
words, although the code is present, its
non-availability within a specific applica-
tion must be demonstrated. Typically, this
means that the unused functional inter-
face must be verified to ensure that the
unused software is not used in a particular
configuration.

These configuration mechanisms can
entail a hardware switch such as jumper-
pin settings, or can be performed purely in
software. For example, if a software func-

tion is included in the object module but
the entry point (the call to the particular
routine) is not invoked, the software func-
tion can be shown as not accessed.
Alternatively, if a routine includes a para-
meter switch to turn off parts of the rou-
tine’s functionality, the switch mechanism
can be verified and the software reviewed
to ensure that the switch is always set
appropriately.

Requirements Volatility
The ability to identify and isolate volatile
requirements can maximize the ability to
reuse. For example, if control logic were
historically a primary source of change,
an appropriate reuse strategy would dic-
tate that the control logic is separated
from non-volatile areas. This separation
would enhance the ability to reuse non-
volatile areas.

Both historical metrics as well as appli-
cation-specific projections of change are
important when considering requirements
volatility. Applications may have inherent
areas of instability that, by design, will
always result in functional modifications;
for example, application control laws that
must be tuned for each targeted applica-
tion. On the other hand, past areas of
instability may have been resolved in the
existing software baseline and application-
specific changes indicating other hot spots
are likely. In any event, a careful analysis of
requirements volatility is vital in develop-
ing an appropriate reuse strategy.

Previous Development Rigor
Understanding the rigor with which previ-
ous development was performed is critical
in determining the amount of effort that
will be required to incorporate existing
artifacts into a new configuration. When
previous certification treatment is insuffi-
cient for the current application, whether
the software to be reused is commercial
off-the-shelf (COTS), software developed
to other guidelines (for example, military
guidelines), software certified to DO-178
or DO-178A, or software developed to
DO-178B but to a lower software critical-
ity level, effort must be expended to pro-

Reuse and DO-178B Certified Software:
Beginning With Reuse Basics

To successfully approach reuse and the associated certification considerations, a rigorous understanding of reuse is important.
This article, from a certifiability perspective, defines reuse, discusses reuse drivers and typical reuse scenarios, and details the
various types of reuse. In addition, a brief overview of a reuse analysis and implementation approach will be presented.

Hoyt Lougee
Foliage Software Systems

“Understanding the rigor
with which previous
development was

performed is critical in
determining the amount

of effort that will be
required to incorporate
existing artifacts into a

new configuration.”

vide assurance that the software is suitable
for the target certification effort.

If the previous software development
was not certified with DO-178B, the
existing development artifacts must be
analyzed and mapped to the objectives of
DO-178B. As a guideline, DO-178B does
not dictate specifics with respect to data
items or specific development processes.
Instead, DO-178B details objectives that
must be satisfied. Often, especially with
military applications, a great deal of rigor

was applied to the development process
and a wealth of reusable artifacts is avail-
able.

On the other hand, if the previous
development was certified with DO-
178B, the previous development criticali-
ty level will determine the types of arti-
facts created, how the artifacts were con-
figured and the type of change control
provided, and the extent to which verifi-
cation was performed.

Verification independence is also dri-

ven by the software criticality level. Higher
criticality levels require greater levels of
independence; therefore, the impacts of
resolving independence issues must be
considered. For example, criticality levels
A and B require independence in assuring
that the software high-level requirements
comply with the system requirements and
that the high-level requirements are accu-
rate and consistent. These reviews must
be re-addressed if the requirements are to
be reused.

Maturity of Existing Artifacts
As a rule of thumb, reuse of buggy code is
not a good idea – especially if the func-
tionality is to be modified. Debugging
modifications of buggy code compounds
the complexity of the development
process. As software issues arise during
development, the source of the issues is
not clear. Was the problem related to
recent changes, was the problem related to
reused elements, or was the problem relat-
ed to a combination of the two?
Moreover, the pedigree of buggy code
may not be clear: Some bugs may necessi-
tate major architectural changes – changes
that, unfortunately, were not factored into
the initial reuse analysis.

Defect history can be analyzed in sev-
eral ways to get a feel for the bugginess of the
previous software. The number and char-
acter of the defects found in the previous
development effort can identify problem
areas and provide insight into the amount
and types of problems that can be expect-
ed. Analysis of the overall defect trending
is also important. If the software was
released and the defect-identification rate
was still increasing, the software is sure to
have undetected defects. On the other
hand, if the defect-find rate was asymp-
totically approaching zero defects, the
probability of a large number of unde-
tected defects is lower.

Targeted Platform Changes
Often the ability to reuse software and
reap the initial considerable investment in
certifiable-software development is ham-
pered by changing hardware platforms.
Platforms change for many reasons rang-
ing from strategic technology migration to
obsolescence issues. Regardless of the
motivation for changing the platform, the
effects on software reuse are critical to the
overall project impact.

Too often, the decision to update the
hardware platform is performed without
considering software reuse – disastrous
effects on project schedules and budgets
typically result. Since software develop-
ment increasingly requires the lion’s share

24 CROSSTALK The Journal of Defense Software Engineering December 2004

RTCA DO-178B:
Software Considerations in Airborne
Systems and Equipment Certification

Published by the Radio Technical Commission for Aeronautics, Inc. (RTCA) and adopt-
ed by the Federal Aviation Administration (FAA) Advisory Circular AC20-115B, DO-
178B provides guidance in meeting airborne-product airworthiness requirements
associated with software. Adherence to DO-178B adds an extra level of difficulty to the
already challenging undertaking of embedded software development. The guidelines
are not straightforward; interpretations vary, and acceptance is not always impartial.

DO-178B defines the objectives and activities that must be performed in develop-
ing and verifying airborne software systems. The specific objectives and the resulting
rigor varies according to the criticality of the software, ranging from the most rigorous
Level A for software whose failure can have catastrophic consequences to Level E for
software whose failure has no effect on the aircraft’s continued safe flight and landing.

Adherence to DO-178B, therefore, will produce evidence by which the applicant
can instill confidence in the FAA that the software embedded in airborne equipment is
safe for its intended use. The software development and verification processes nec-
essary to generate this evidence can be costly and time consuming. As a conse-
quence, avionics manufacturers, struggling with their cost and schedule constraints,
often turn to reuse.

Figure 1: Example Structured-Design-Based Configuration

Reviews

Reviews

Reviews

Reviews

Reviews

Planning Data

Requirements

Design Data

Source Code

Test Cases and Procedures

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Executive Control

Monitor

Input/Output

Built -in Test

Control Laws

Figure 1: Example Structured-Design-Based Configuration

Reuse and DO-178B Certified Software: Beginning With Reuse Basics

December 2004 www.stsc.hill.af.mil 25

of project budgets, software reuse should
be a central consideration when develop-
ing a hardware migration strategy.

The target platforms must be analyzed
in terms of concurrent multiple-platform
support and the anticipated platform life
span. The overlying product/business
strategy must be examined to determine
the need to support multiple-concurrent
platforms. Questions to ask include the
following:
• Is the software intended for use on

varying concurrent platforms?
• What is the anticipated life span of tar-

geted platforms?
• Is there a hardware migration plan

(and if not, why not)?
• What are the characteristics of antici-

pated future platforms?
• Will future platforms be based on the

same family of processors?
• Will the same basic hardware design/

interface be retained?

Reuse Strategies
Full Vertical Reuse Versus Partial
Vertical Reuse
Reuse can entail the entire life-cycle arti-
fact set or subset. Full vertical reuse
includes all life-cycle artifacts related to
specific functionality. With certifiable avia-
tion-software configurations, vertical reuse
would entail all software life-cycle data:
planning data, requirements data, design
data, verification data, as well as configura-
tion management data and quality assur-
ance data. Partial vertical reuse would
include a subset of this data: Perhaps only
the requirements and design data would be
appropriate for reuse. Clearly, full vertical
reuse is preferred, but significant cost and
schedule savings can still be accomplished
by analyzing existing software systems for
partial vertical reuse opportunities. Figure
1 illustrates a simple configuration based
on a structured design.

As shown in Figure 2, full vertical
reuse includes all life-cycle artifacts of the
development, whereas in this example,
partial vertical reuse only includes the
requirements and design. Note that the
associated quality assurance data and con-
figuration management data, as well as the
associated review data, are included with
each vertical layer.

Even with full vertical reuse, however,
there is still work to be performed to incor-
porate the reuse within a new application.
Suppose that a feature whose functionality
is unchanged is to be reused. Furthermore,
suppose that all associated life-cycle data is
expected to be accurate and appropriate
with respect to the targeted application. A
finite amount of work must still be per-

formed and documented to ensure that the
artifacts are indeed appropriate for use in
the targeted application.

With all this extra activity, what is
gained? The reviews and analyses per-
formed are typically neither as extensive
nor time consuming as the initial from
scratch reviews. These reviews and analyses
are specific and focused on the integration
of the reused artifacts into the target
application. With respect to the
design/architecture and code reviews, the
focus is on the external interface to the
reusable functionality. If the code to be
reused includes 150 complex modules,
only two of which interface externally,
only the two modules would be the sub-
jects of in-depth review.

Note that all previous and new review
and analyses evidence are appropriate for
the new certification effort.

Full Horizontal Versus Partial
Horizontal Reuse
Reuse can include all artifacts within a spe-
cific life-cycle step or a subset. Full hori-
zontal reuse includes all artifacts within a
specific life-cycle step as illustrated in
Figure 3. For example, reusing all source
code would be an example of full hori-
zontal reuse: All functionality is appropri-
ate for the new application. Partial hori-
zontal reuse would entail the extraction of

a subset of functionality.
Typically, most design-for-reuse arti-

fact libraries currently used today are hor-
izontal code-component libraries. Often,
an overall design is created based on the
requirements at hand and an understand-
ing of what is available in the code-com-
ponent library. In fact, code libraries pro-
vided by language vendors adhere to this
model: The user is to create an applica-
tion-specific design based on the require-
ments and the language capabilities to
support varying designs. With aviation
software reuse, however, the common
designs are critical in creating families of
applications, especially with respect to
alignment to hardware architectures.

Note that partial horizontal reuse
might not be undertaken with the goal of
enhancing the systems features; partial
horizontal reuse may be used to remove
extraneous functions to create simplified
applications.

Finally, as with vertical reuse, the veri-
fication of the reuse component interface
to the target hardware and software is key.
Careful analysis and planning for these
interfaces must be performed.

Designed for Reuse Versus Not
Designed For Reuse
Many organizations approach reuse from
the purist design-for-reuse point of view.

Figure 1: Example Structured-Design-Based Configuration

Figure 2: Partial Versus Full Vertical Reuse

Reviews

Reviews

Reviews

Reviews

Reviews

Planning Data

Requirements

Design Data

Source Code

Test Cases and Procedures

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Configuration Management Data

Quality Assurance Data

Configuration Management Data

Full
Vertical
Reuse

Partial
Vertical
Reuse

Control Laws

Quality Assurance Data

Figure 2: Partial Versus Full Vertical Reuse

Figure 3: Partial Versus Full Horizontal Reuse

Reviews

Executive Control

Reviews

Monitor

Quality Assurance Data

Input/Output

Quality Assurance Data
Reviews

Built-in Test

Quality Assurance Data Reviews

Control Laws

Quality Assurance Data

Configuration Management Data

Partial
Horizontal

Reuse

Full
Horizontal

Reuse

Source Code

Figure 3: Partial Versus Full Horizontal Reuse

Reuse

26 CROSSTALK The Journal of Defense Software Engineering December 2004

These organizations create reusable arti-
facts with the express purpose of populat-
ing reuse repositories for use in future
applications. These reusable artifacts typi-
cally require more time to create because
they must be functionally robust to accom-
modate all expectations for future usage.

Once created, these repositories
inevitably suffer from functionality creep:
The ultimate functionality provided often
does not account for some future usage
scenario. As a result, the reusable elements
are either duplicated and modified result-
ing in two similar elements to sustain or
the element is extended with care for back-
wards compatibility. Of course, design for
reuse can be very valuable and often pro-
vides the greatest cost savings. Clearly,
well-conceptualized artifacts are easier to
sustain and extend than constrained arti-
facts (designed as intended for initial use).
But just as often, the costs associated with
the creation of the repository are underes-
timated, as is the volatility of the function-
ality desired.

On the other hand, organizations
often employ scavenge reuse, that is, har-
vesting existing artifacts that were not
specifically designed for reuse.
Depending upon the initial quality of the
artifact, as well as the amount of horizon-
tal and vertical reuse appropriate, scav-
enging existing software artifacts is often
the best solution. On the other hand, if
the initial software suffers from quality
issues or the fit within the target applica-
tion is not clean, starting from scratch
may be the appropriate strategy.

Not Modified for Reuse Versus
Modified for Reuse
Software artifacts that need not be modi-
fied for reuse typically offer the fewest cer-
tification hurdles. The cost-benefit is high-
est with scenarios in which the previous
data can be used as is and only the applica-
bility and interfaces verified. Minimal
changes to artifacts, therefore, result in
minimal additional certification effort.
Often, only a regression analysis and a
minimal regression suite are required to

accommodate changed artifacts.
Changes to artifacts should be well

considered to minimize the impact.
Requirements and architectural changes in
the software in which the reusable artifact
is to be incorporated should often be tai-
lored around reusable artifacts to minimize
the overall project cost and schedule.
Careful analysis of the requirements,
design, and architecture of both the con-
figuration to be reused, as well as the con-
figuration into which reusable artifacts are
to be incorporated, can provide critical
input into the cost/benefit analysis and
reuse strategy selection.

Partitioned Versus Non-Partitioned
Reuse
Partitioned [4] software provides natural
divisions for horizontal reuse. Designs that
can partition software into volatile and
non-volatile elements and minimize the
amount of interfaces to be verified can
result in significant cost and schedule sav-
ings. Since higher levels of criticality drive
higher costs and longer schedules, mini-
mizing the amount of software with criti-
cal functionality is desirable.

Partitioning a software system to sepa-
rate higher- and lower-criticality levels can
minimize the more costly critical severity
verification activities. If the critical soft-
ware partition is further designed with
reuse in mind, the benefits can be twofold.
For example, if engine-control software is
partitioned into critical built-in test and
engine-control functionality versus non-
critical built-in test and monitoring com-
munications, reuse could be performed on
each partition independently.

If the noncritical built-in test and
monitoring is most volatile, the more
expensive engine-control and critical built-
in test partition need not be completely re-
addressed each time the more volatile
areas change. This reused software can
also build service history, lowering certifi-
cation risk, and increasing confidence in
the overall application.

Reuse Scenarios
Common Functionality – Different
Target Platform
Avionics manufacturers often mitigate the
effects of changing platforms with a lay-
ered architectural approach (see Figure 4).
This architecture provides for a hardware-
interface layer to insulate high-level appli-
cation software from the effects of chang-
ing platforms: Software accommodation
of hardware changes is limited to this
interface layer. For different applications
with different functionality using the same
hardware, this insulation layer remains

constant and can be reused. For applica-
tions with different hardware but with the
same functionality, this interface layer can-
not be reused, but the application software
that sits on top of the insulating layer can
be reused.

In so far as an application is certified
for the functionality provided and that
functionality depends on both the insula-
tion layer and the application layer, the
interface between the insulation layer and
the application layer must be verified when
either the high-level functionality layer or
the insulation layer changes.

Common Functionality – Different
Tools
Different target platforms, especially those
not in the same family, often require
changes in the toolset used in development
and verification of the software system.
Manufacturers often resist changing
toolsets because of the additional impacts
on tool qualification and new-tool learning
curves. These hidden costs are often
neglected in the planning of product
changes.

Changes in design methodology typi-
cally have greater impact on qualification
than do simple changes in compiler ver-
sions or changes in language. Isolation of
change impact and the extent/scope of
the regression analysis are typically more
extensive with design methodology
changes. Changing both the design
methodology and the language com-
pounds reuse issues.

With different languages, versions of
the same language (and associated toolset
changes), or even when different sets of
compiler options are to be used that would
result in different object code, previous
DO-178B verification activities are typical-
ly invalidated and must be re-performed.
When a different processor is used, the
development toolset and the resulting
object code will necessarily change, even
for the same source code. In addition,
hardware/software integration verification
must be repeated. Hardware/software
integration tests and hardware/software
compatibility reviews must be updated as
appropriate and performed again.

Common Functionality – Different
Development Standards
When previous certification treatment is
insufficient for the current application,
whether the software to be reused is
COTS, software developed to other
guidelines (for example, military guide-
lines), software certified to DO-178 or
DO-178A, or software developed to DO-
178B but to a lower software criticality

Figure 3: Partial Versus Full Horizontal Reuse

Reviews

Executive Control

Reviews

Monitor

Quality Assurance Data

Input/Output

Quality Assurance Data
Reviews

Built-in Test

Quality Assurance Data Reviews

Control Laws

Quality Assurance Data

Configuration Management Data

Partial
Horizontal

Reuse

Full
Horizontal

Reuse

Source Code

Target Platform
Hardware

Hardware/Software
Insulation Layer

High-Level
Functionality Layer

Reuse Interface

Reuse Interface

Figure 4: Layered Architectural Approach

Reuse and DO-178B Certified Software: Beginning With Reuse Basics

December 2004 www.stsc.hill.af.mil 27

level, special certification considerations
can be invoked.

In all cases, the objectives of DO-178B
must be satisfied completely. The system
safety assessment for the new application
will provide guidance in the level to which
this certification effort must proceed.
Typically, reuse of significant portions of
existing artifacts (code and supporting
documentation) can be leveraged. Reverse
engineering may be used to regenerate
software life-cycle data that is inadequate
or missing. As with all types of reuse, the
Plan for Software Aspects of Certification
should detail the strategy to ensure early
buy-in by the certification authorities.

Common Functionality –
Refactoring
For the purposes of this discussion,
refactoring concerns the update of the
software design and implementation
without necessarily changing the func-
tionality, tools, or target environment.
Because of the significant costs of certi-
fication, refactoring is not typically per-
formed; the rationale that “if it’s not bro-
ken, don’t fix it” provides the most
cost/benefit. However, sometimes refac-
toring is necessary to provide a more
robust, sustainable, and/or extensible
application – and may be the appropriate,
long-term, strategic approach.

Different Functionality – Common
Platform/Tools
If functional alignment is not exact, change
must be accommodated as discussed previ-
ously. This situation is probably the most
common reuse scenario and includes both
modifications of a single application for
defect resolution and functional enhance-
ments, and feature tailoring for different
versions of the same application.

First and foremost in accommodating
functional changes is the isolation of the
change area within the software architec-
ture. Localized changes facilitate regres-
sion verification, especially if specifically
designed to do so. In addition, certification
authorities, when reviewing modifications
to certifiable configurations, must under-
stand the change impact. Clearly defined
localized changes are easier to analyze, eas-
ier to document, and easier to communi-
cate to the certification authority.

Localizing changes is facilitated with
highly cohesive and loosely coupled
reusable artifacts. Loosely coupled ele-
ments have low levels of interdependency
with their environments. Highly cohesive
elements have a high level of uniformity in
the element’s functional goal. A cohesive
element serves one functional purpose.

Different Functionality – Different
Platform/Tools (Portability)
Changing functionality, as well as the tar-
get platform/toolsets, often occurs as
new families of products are developed. A
modular approach can be adopted to
address the changes.

In contrast to the layered architectural
approach, dividing architecture by specific
functionality is also advantageous. As
requirements change over time or as dif-
ferent members of the same application
family require different functionality, spe-
cific functional divisions can be advanta-
geous. The granularity of the architectur-
al divisions must be carefully considered
to isolate areas that can change indepen-
dently (non-cohesive elements). In the
extreme, hardware and software become
reusable components – a plug-and-play
strategy can be adopted. The best-known
example of this reuse scenario is, of
course, the personal computer with the
wide array of associated peripheral
devices. As with horizontal layering, veri-
fication of the interface is key to the
incorporation of reusable elements.

Same Application – Different
Aircraft Installation
DO-178B provides for “airborne systems
or equipment, containing software that
has been previously certified at a certain
software level and under a specific certifi-
cation basis” [3], being used in new air-
craft installations.

If the system safety assessment per-
formed for the new system does not indi-
cate a new software level, the software

configuration may be used as is. All soft-
ware artifacts may be provided without
change or further work for the new appli-
cation certification. The development of
a new Plan for Software Aspects of
Certification and Accomplishment
Summary may be the only tasks to be
performed.

If any changes are to be performed to
accommodate the new aircraft installa-
tion, the software must be treated as indi-
cated above for previously developed
software.

Benefits of Reuse
Technical and commercial trade journals
widely tout reuse’s promised benefits.
Lower development costs, reduced pro-
grammatic risks, and shortened schedules
flow from successful reuse and result in
enhanced corporate competitive advan-
tage. The value of reuse increases as the
time, cost, and expertise invested in prod-
uct development are continually leveraged
across an ever-wider range of products.

A less publicized benefit of reuse is
safety. For example, the concept of build-
ing a service history illustrates one of the
safety benefits of reuse. Reused software,
when properly analyzed and integrated,
undergoes greater scrutiny and time on the
wing over time. Another reuse safety ben-
efit derives from properly partitioned
software, which minimizes the amount of
interaction between non-critical and criti-
cal software, thereby reducing the num-
ber of possible error sources for critical
functionality.

A final benefit of reuse derives from

Aviation and Obsolescence

Electronic component manufacturers base their offerings on the ability of their prod-
uct lines to generate income. Income is generated by selling quantities of compo-
nents at specific prices. These manufacturers maximize their profits by providing high
quantities at low cost rather than low quantities at higher cost. Unfortunately, the avi-
ation market is not a significant consumer of electronic components. Instead, cell
phones and personal computers drive the market offerings. As such, the fast, com-
petitive pace of technology evolution has increasingly affected aviation manufactur-
ers. Careful planning of component provisioning and migration are key to a success-
ful product strategy.

Obsolescence issues make reuse key. In recent years, the obsolescence of elec-
tronic components has driven avionics manufacturers to redesign for new processors,
memory and communications chips, and other electronic components.

Design for reuse often becomes design for obsolescence as manufacturers strive
to reduce the cost of fielding their products. Manufacturing companies are often faced
with a dilemma: Can a sufficient supply of components be purchased as a last time
buy for all future projected use, can secondary suppliers that create the component in
lower quantities at exorbitant prices supply the components, or should a redesign be
performed with the associated recertification issues? Redesign often provides the abil-
ity to incorporate new functionality and defray future obsolescence issues, but the cost
is often prohibitive. Reuse of all or parts of the software configuration can be key to
finding the least-risk, go-forward manufacturing approach.

defect reporting over multiple applica-
tions. A well-coordinated reuse strategy
will track defects common to reused
components. When a defect is found on
an application in a reuse component,
other applications that use the same reuse
component can be examined for defect
impact and updated as appropriate.

Industry Case Study: Primus
Epic
Honeywell’s Primus Epic illustrates many
of the reuse concepts discussed above.
To address industry demands for system
scalability, system reliability and maintain-
ability, and reduced acquisition and appli-
cation costs, Primus Epic, Honeywell’s
next generation integrated avionics sys-
tems, incorporates a highly flexible and
cost-efficient framework.

The Primus Epic Product Line
Architecture (PLA), packages integrated
modular units and line-replaceable units
into a single aircraft-wide Virtual
Backplane Network. This architecture
allows data generated by each system
component to be available to all other sys-
tem components.

Variation in the PLA is supported by
the Module Avionics Unit (MAU): a cabi-
net containing field replaceable modules.
These building blocks provide input/out-
put, processing, and database storage
functions.

The building blocks housed in the
MAU communicate using the Avionics
Standard Communications Bus using a
Network Interface Controller module [5].

Partitioning was used with great effect
to separate hardware components, sepa-
rate hardware from software components,
and separate software components within
the Primus Epic system. Honeywell, for
example, received a Federal Aviation
Administration Technical Standard Order
(TSO) approval for the modular avionics
cabinet as an item of hardware. The vari-
ous avionics functions such as the flight
management system contained in the
software are obtained with a separate
TSO. The certification impacts of subse-
quent development or changes to a par-
ticular established configuration are con-
siderably reduced.

Honeywell’s Digital Engine Operating
System (DEOS), which forms the Primus
Epic software platform, provides stan-
dard services and interfaces for hosted
applications. This operating system sup-
ports RTCA DO-178B partitioning,
which minimizes the certification costs of
the hosted software application by allow-
ing different certification levels for appli-

cations with different criticality consider-
ations. Different software functions host-
ed on DEOS can be certified with vary-
ing amounts of rigor, depending upon
their particular effects on safety. Since
software development and certification
costs have increased astronomically in
relation to the hardware costs, this capa-
bility further supports cost, schedule, and
risk savings [6].

Honeywell’s success with their Primus
Epic system illustrates well the variability
possible with a solid, common PLA.
Primus Epic serves as the foundation for
business jet, regional aircraft, and heli-
copter cockpits, including Dassault’s
Enhanced Avionics System (EASy) cock-
pit to be used in all new Falcon Jet mod-
els. The PLA accommodates extensive
variation, including changes in aircraft
configurations, changes in aircraft inte-
grating components, radically different
look and feel for both the displays (from
two to six displays), and a variety of user
input devices (from traditional controllers
to new cursor control devices and voice-
command mechanisms). Moreover, the
specific functionality supported can range
from movable navigation maps and real-
time video to engine instrument and crew
advisory systems and primary flight and
navigation systems.

Primus Epic was designed as an inte-
gration platform; consider the EASy
flight deck, which is based upon Primus
Epic. Dassault was the primary system
architect and worked in cooperation with
Honeywell to create EASy. Honeywell
opened up their previously proprietary
communications bus specification to
enable the creation or modification of a
variety of custom and off-the-shelf com-
ponents. Dassault was able to select
among compliant avionics vendors to
populate the cockpit, create new and
effective configurations, and maintain
their competitive advantage [7].

Conclusion
Cost and schedule can be saved, and safe-
ty can be enhanced with reuse for DO-
178B certifiable software. A thorough
understanding of the key reuse factors, a
clear purpose and goals, a solid analysis,
and careful planning are necessary to
maximize the benefits of reuse.
Manufacturers must analyze the many
types of reuse and select among them.
Reuse is a complex endeavor and the ben-
efits are only available to those who
approach it with care.u

References
1. Ezran, M., M. Morisio, and C. Tully.

Practical Software Reuse. 1st ed.
London: Springer-Verlag, 15 Feb.
2002.

2. Dr. Carma McClure. “Model-Driven
Software Reuse Practing Reuse
Information Engineering Style,” 1995
Extended Intelligence, Inc.

3. Radio Technical Commission for
Aeronautics, Inc. RTCA DO-178B,
Software Considerations in Airborne
Systems and Equipment Certifica-
tion. Section 4.4.3 Structural
Coverage Analysis Resolution, (d)
Deactivated Code. Washington, D.C.:
RTCA, 1 Dec. 1992 <www.rtca.org>.

4. Radio Technical Commission for
Aeronautics, Inc. RTCA DO-178B,
Software Considerations in Airborne
Systems and Equipment Certifica-
tion. Section 2.3.1 Partitioning.
Washington, D.C.: RTCA, 1 Dec.
1992 <www.rtca.org>.

5. Honeywell. “Primus Epic: Topology.”
Feb. 1998 <www.myflite.com/my
flite/products/ias/epic/14T0p040
gy.jsp>.

6. Hughes, David. “This Is Not Deja
Vu.” Aviation Week & Space Tech-
nology 4 June 2003.

7. Taverna, Michael A. “Making Flight
Easy.” Aviation Week & Space
Technology 2 June 2003.

Reuse

28 CROSSTALK The Journal of Defense Software Engineering December 2004

About the Author

Hoyt Lougee is the
engineering manager,
Aviation Division, at
Foliage Software Sys-
tems. Foliage delivers
software architecture,

custom software development, and tech-
nology strategy consulting. Lougee’s
responsibilities include program man-
agement and software process improve-
ment. Previously with AlliedSignal/
Honeywell, Lougee has more than 13
years of experience with both military
(DoD-STD-2167a) and commercial
(RTCA DO-178B) aviation software
development and certification efforts.
Lougee has authored a number of white
papers and presented at the 2002 Digital
Avionics Systems Conference.

Foliage Software Systems
168 Middlesex TPKE
Burlington, MA 01803
Phone: (781) 993-5500
Fax: (781) 993-5501
E-mail: hlougee@foliage.com

